Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The increasing global population has intensified the demand for energy and food, leading to significant greenhouse gas (GHG) emissions from both sectors. To mitigate these impacts and achieve Sustainable Development Goals (SDGs), passive thermal storage methods, particularly using phase change materials (PCMs), have become crucial for enhancing energy efficiency and reducing GHG emissions across various industries. This paper discusses the state of the art of bio-based phase change materials (bio-PCMs), derived from animal fats and plant oils as sustainable alternatives to traditional paraffin-based PCMs, while addressing the challenges of developing bio-PCMs with suitable phase change properties for practical applications. A comprehensive process is proposed to convert bacon fats to bio-PCMs, which offer advantages such as non-toxicity, availability, cost-effectiveness, and stability, aligning with multiple SDGs. The synthesis process involves hydrolysis to break down fat molecules obtained from the extracted lipid, followed by three additional independent processes to further tune the phase change properties of PCMs. The esterification significantly decreases the phase transition temperatures while slightly improving latent heat; the UV-crosslinking moderately raises both the phase transition temperature and latent heat; the crystallization remarkably increases the both. The future research and guidelines are discussed to develop the large scale manufacturing with cost effectiveness, to optimize synthesis process by multiscale modeling, and to improve thermal conductivity and latent heat capacities at the same time.more » « less
-
Abstract When cylinders are packed and wrapped by the bands around the surface, the effective elastic behavior in the cross section of the assembly, which is of significance to its stability and integrity, can be controlled by the wrapping force in the band. The wrapping force is transferred to the cylinders through the Hertz contact between each pair of neighboring cylinders, which is validated by the experiments. The Singum model is introduced to study the mechanical behaviors of the packed cylinders with two-dimensional (2D) packing lattices, in which an inner cylinder is simulated by a continuum particle of Singum and the inter-cylinder force is governed by the Hertz contact model so as to derive the effective stress-strain relationship. The wrapping force will produce configurational forces given a displacement variation, which significantly changes the effective stiffness of the packed cylinders. The hexagonal packing exhibits isotropic elasticity whereas the square packing is anisotropic. The efficacy of our model is demonstrated by comparing the closed form elasticity against the numerical simulation and the previous models. The explicit form of elasticity can be used for packing design and quality control of cable construction and installation.more » « less
An official website of the United States government
